

SRO-100 & SRO-5680

User Manual

Contents

1.	Introduction	5
2.	SRO-100 SYSTEM DESCRIPTION	5
2.1.	PRINCIPLE OF OPERATION AND BASIC CONFIGURATION.....	5
2.2.	PHYSICS PACKAGE	6
2.3.	ELECTRONICS PACKAGE	7
2.3.1.	PRINCIPAL FUNCTIONS OF THE ELECTRICAL CIRCUITS	7
2.4.	THE TIMING AND TRACKING SYSTEM.....	10
2.4.1.	THE “TRACK” MODE AND THE “SYNC” MODE.....	11
2.4.2.	THE FREQUENCY LEARNING	11
2.4.3.	THE FREQUENCY IN USE.....	11
2.4.4.	USER FREQUENCY CORRECTION.....	12
2.4.5.	THE PPS TRACKING LOOP.....	12
2.4.6.	TRACKING LIMITS AND ALARMS.....	12
2.4.7.	FREQUENCY FLUCTUATIONS DURING THE TRACKING	13
2.4.8.	FINE PHASE COMPARATOR OFFSET	13
2.4.9.	CONFIGURATIONS USING THE MCS06yy COMMAND.....	14
3.	SRO-100 SPECIFICATIONS	14
4.	SRO-100 INSTALLATION AND OPERATION.....	14
4.1.	INTRODUCTION.....	14
4.2.	Safety!	14
4.3.	Environmental Responsibility	15
4.4.	SHIPPING AND RECEIVING INFORMATION	15
4.5.	Mounting	15
4.5.1.	SRO-100 PACKAGE	16
4.6.	MOUNTING & MECHANICAL LAYOUT for SRO-5680.....	17
4.6.1.	For standard model :	17
4.6.2.	With LN, ULN , LGS or EULN option	18
4.7.	PIN FUNCTION LAYOUT for SRO-100.....	19
4.8.	PIN FUNCTION LAYOUT for SRO-5680	19
4.9.	NORMAL OPERATION.....	20
4.9.1.	THE “LOCK” MONITORING.....	20
4.9.2.	ANALOG FREQUENCY PULLING.....	20

4.9.3. PPS FACILITIES.....	20
4.9.4. OTHER PROVIDED SIGNALS	20
4.9.5. OPTIONAL SIGNALS	20
4.10. SIMPLE SERIAL INTERFACE OPERATION.....	20
4.10.1. INTRODUCTION.....	20
4.10.2. SERIAL INTERFACE CONNECTION	21
4.10.3. SRO-100 INTERNAL PARAMETERS MONITORING.....	21
4.10.4. CENTRE FREQUENCY ADJUSTMENT WITH THE SERIAL INTERFACE	22
4.10.5. CENTER FREQUENCY READ-BACK.....	23
4.10.6. DDS OUT FREQUENCY	23
4.11. PPS SERIAL INTERFACE	23
4.11.1. GENERAL STATUS OF THE SRO-100	23
4.11.2. TIMING AND TRACKING COMMANDS FORMAT	23
4.12. NMEA PROPRIETARY FORMAT.....	32
4.13. TTL OR CMOS LEVEL “LOCK MONITOR” GENERATION.....	33
4.14. DIRECT VISUAL “OUT OF LOCK” SIGNAL GENERATION	33
4.15. CONNECTING A PPSREF TO THE SRO-100	33
5. Safran Technical Support.....	35

Revision List

Software Revision		Hardware Revision
Date	Version	Comment
11 Jun 2002	1.01	Internal Correction
09 Jul 2002	1.02	Now commands PW and TC store data in EEPROM
23 Jul 2002	1.03	Internal Correction
19 sep 2002	1.04	New command "MCsdd" for interfacing with GPS receiver
27 Sep 2002	1.05	Internal Correction
07 Feb 2003	1.06	New command DT, Date. New command COsddd, time comparator offset
11 Mar 2003		New low power version <17W
19 Aug 2003	1.07	Improved behavior at the start of tracking. Frequency save (FSx) improved. Command MCsdd extended. New commands VS, view PPSRef stability, VT, view time constant. Internal corrections
23 Sep 2003	1.08	New command RAsddd. Internal corrections.
25 Feb 2004	1.09	Back to simple start of tracking. GPS messages for Jupiter-Pico, SuperStar II. NMEA messages.
05 Sep 2007	1.095	Other initial settings
01 Apr 2014	1.096	The display of a missing PPSREF in the answer of beating commands: BT1, BT3, BTA, is now "??????". (Was "9999999" before.) Command DE??????, the answer can be "???????" Command FC: possible cancel of the writing in eeprom Beating command BTB: the 3rd frequency (aaaa) is now the frequency stored in eeprom Correction of minor software issues reported since version 1.095

7 Sep 2016	1.097	New command.GFdddd :Set and activate the go fast mode during the beginning of a tracking. Correction of minor software issues reported since version 1.096	
10-May 2024		Rebranding to Safran	

1. Introduction

The Models SRO-XXX Rubidium Ultra-Stable Oscillators are sub-miniature, atomic resonance-controlled oscillators with extended PPS (Pulse Per second) facilities. The standard version provides following signals:

- Extremely stable 10 MHz sinus. (5 and 15 MHz in option).
- 60 MHz VCXO frequency.
- PPS Out.

This device can track a PPS Ref signal provided by a stable reference like a GPS receiver. The SRO-100 is designed for navigation, communication and timing instruments requiring extremely stable and precise frequency referenced to the atomic world standard.

This manual contains information about the operation and field maintenance of the SRO-100.

Chapter 2 contains a general description of the unit. It also presents a basic theory of operation for a technician or engineer who requires a better understanding of the unit's operation.

Chapter 3 lists all specifications and operation requirements of the SRO-100.

Chapter 4 gives information on how to install and operate the unit. It is recommended to read these prior to operating the unit. This chapter describes also the possible serial interface connection for the monitoring and tuning of the internal parameters and the timing signals operations.

2. SRO-100 SYSTEM DESCRIPTION

2.1. PRINCIPLE OF OPERATION AND BASIC CONFIGURATION

The SRO-100 essentially consists of a voltage-controlled crystal oscillator (VCXO) which is locked to a highly stable atomic transition in the ground state of the Rb⁸⁷ isotope. While the VCXO is oscillating at a convenient frequency of 60 MHz, the Rb clock frequency is at 6.834...GHz in the microwave range. The link between the two frequencies is through a phase-stabilized frequency multiplication scheme whereby a synthesized frequency is admixed to enable exact matching.

The Rb atoms are confined in a high temperature vapor cell. The cell is put in a microwave resonator to which the microwave power derived from the VCXO is coupled. The Rb⁸⁷ atoms in the cell occur with equal probability in the two hyperfine energy levels of the ground state (F=1 and F=2).

In order to detect the clock transition between these two levels, the atoms need to be manipulated in such a way that most of them occur in only one level. This is done by optical pumping via a higher lying state (P). Figure 1 visualizes the atomic energy levels and transitions involved in the optical pumping process.

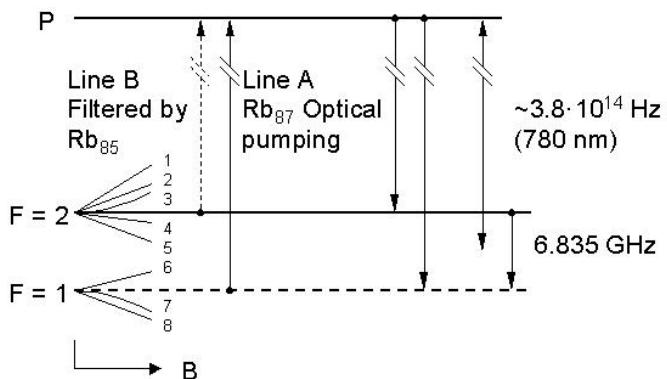


Figure 1: Energy levels and transitions in Rb⁸⁷ atoms during SRO-100 operation

The pump light comes from a Rb resonance lamp which emits the light of Rb87 atoms. This light, which intersects the absorption cell, is filtered in such a way that mainly one optical frequency, which corresponds to a transition out of one of the two ground state levels (line A), enters the principal absorption region.

The pump light excites Rb87 atoms which are in the lower hyperfine level ($F=1$) to the short-lived excited state P from which they decay to the two ground state levels ($F=1,2$) with equal probability. Since pumping occurs continuously out of the $F=1$ level, after some time, almost all atoms are found in the $F=2$ level and no further absorption occurs.

The transmitted light level is detected by a photodiode after the cell. If now a microwave field resonant with clock transition $F=2 \rightarrow F=1$ is coupled to the interaction region, the level $F=1$ is repopulated and light absorption is enhanced. A sweep of the microwave field over the resonance is detected as a small dip in the transmitted light level after the cell.

This signal is fed into a synchronous detector whose output generates an error signal which corrects the frequency of the VCXO when its multiplied frequency drifts off the atomic resonance maximum.

The absorption cell is filled with metallic vapor which contains Rb85 and Rb87 isotopes and a buffer gas. Filtering of the pump light is achieved in the entrance region of the cell by absorption with Rb85 atoms which have an accidental overlap with one of the Rb87 resonance transitions (line B): integrated filter cell.

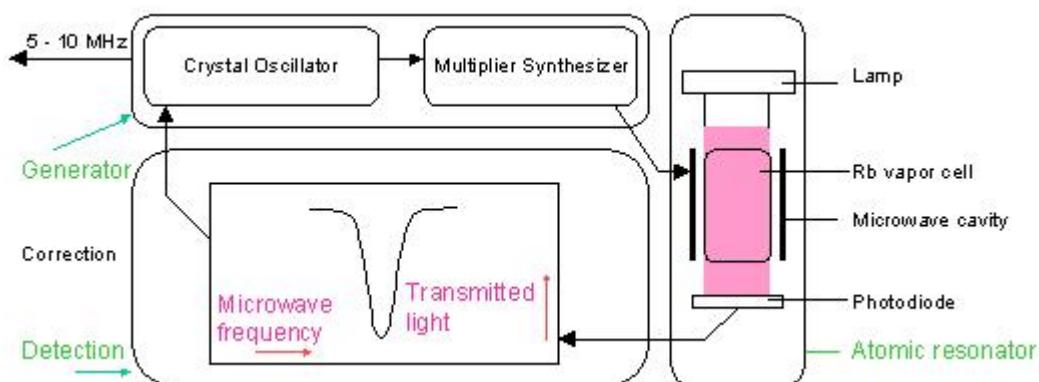


Figure 2: Rubidium atomic clock principal block diagram

The principal function of the buffer gas is to keep the Rb atoms away from the cell walls and restrict their movements. As a result, they are practically "frozen in place" for the interaction time with the microwave field. In this way the Doppler-effect is virtually removed and a narrow line width remains.

The cell region is also surrounded by a so-called C-field coil which generates a small axial static magnetic field to resolve the Zeeman sub-transitions of the hyperfine line and select the clock transition, i.e. the one with the least magnetic sensitivity. To further reduce the magnetic sensitivity, the complete device is placed into a magnetic shield.

Figure 2 gives a basic overview of the different function blocks of the Rubidium atomic clock. The SRO-100 consists of three different packages. The optical elements, which include the Rb absorption cell and microwave cavity, form the atomic resonator, while the electronics package is comprised of the generator and the detection circuitry.

2.2. PHYSICS PACKAGE

The main design characteristics of the physics package are its low power consumption, small size and mass, along with minimal environmental sensitivities and mechanical ruggedness.

All parts of the physics package are directly mounted on a PCB. The external shell housing is used as magnetic shield. This allows a miniature design with low power consumption, short warm-up time and minimal environmental sensitivity.

Other design features which contribute to the compact design are:

- Use of the integrated filter technique (IFT)
- Use of a magnetron-type microwave resonator

The integrated filter technique which combines the optical filtering and pumping in one cell contributes also to the reliability since the configuration is simplified and the number of components reduced. The thermal capacitance of the cell assembly is relatively low. The necessary power during warm-up is greatly reduced.

The magnetron resonator is a cylindrical cavity loaded with a concentric capacitive-inductive structure (annular metal electrodes). It allows smaller cavity dimensions and concentrates the microwave field at the right region of the cell.

The Rb lamp is an electrode-less RF-discharge lamp: a heated glass bulb which contains Rb and a starter gas surrounded by an RF-coil.

Although the atomic clock transition frequency is inherently quite stable, there are second order influences which affect the frequency, i.e. temperature (buffer gas), light intensity (light shift = optical Stark effect), magnetic field (2nd order Zeeman effect). As a consequence, the temperatures of lamp and cell, the power of the lamp oscillator and the current in the C-field coil have to be carefully stabilized.

2.3. ELECTRONICS PACKAGE

2.3.1. PRINCIPAL FUNCTIONS OF THE ELECTRICAL CIRCUITS

The clock transition of a Rb resonator is a microwave transition at 6.834 GHz.

The microwave resonance occurs as a dip in the optical signal; i.e. in the Rb lamp light which, after transiting the cell, is detected by a photodiode.

The basic purpose of the electronics package is to synchronize the entering microwave frequency, derived from a quartz crystal oscillator, to this absorption dip. This is achieved by tuning the microwave frequency to maximum optical absorption.

Frequency variations of the microwave signal are transformed into DC current changes at the photo-detector.

The dip, visualized in the photo-current versus microwave frequency curve of Figure 3, is very small. It is in the order of 1% of the total photo-current which is however approximately 10 times higher compared to other commercial rubidium standards on the market.

Since DC detection of the dip is not feasible, an AC detection method is used for the following reasons:

- The dip amplitude is very small compared to the total photo-current.
- The slope of the derivative of the dip photo-current versus microwave frequency corresponds to roughly 1 nA/Hz. AC detection is the only solution to have a good signal/noise ratio since the photo-detector with associated amplifier are affected by flicker noise.

The AC method involves square wave frequency modulation of the microwave signal at a rate of fm~300 Hz. As shown in Figure 3, the modulated microwave frequency flips between 2 discrete frequency values f_1 et f_2 . The resulting photo-current $i(t)$ appears then also (after the transient) at 2 discrete values i_1 and i_2 .

The difference between i_1 and i_2 produces the error signal used for the quartz crystal center frequency adjustment until the mean value of f_1 and f_2 is exactly equal to the rubidium hyperfine frequency.

The clock microwave frequency of the Rb atoms in the vapor cell has a nominal value of 6834.684 MHz. This frequency is generated from a voltage controlled quartz oscillator (VCXO) that oscillate at 60 MHz.

Multiplication from 60 MHz to 6840 MHz is accomplished in one stage (x114) using a step-recovery diode mounted in the magnetron resonator inside the physics package.

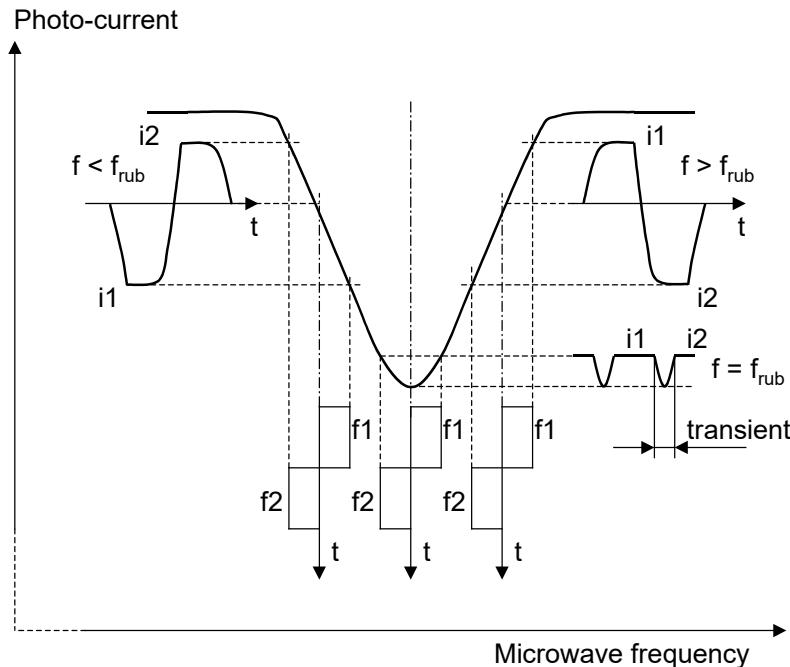


Figure 3: Dip minimum detection

The 5.316... MHz phase modulation is introduced at the 60 MHz level. The 5.316... MHz spectrum is thus reproduced as a sideband of the 6840 MHz signal multiplied from the 60 MHz VCXO. The difference of the two frequencies corresponds to the Rb clock frequency.

This 5.316... MHz is generated by a DDS (Direct Digital Synthesizer) which is frequency modulated at the rate of f_m for dip detection.

The center frequency of the synthesizer is adjustable with step sizes of 0.00512mHz in order to have the capability to adjust the SRO-100 output frequency (10 MHz) with a resolution of 5.12·10-13 per step and, also, to compensate the frequency shift due to the buffer gas pressure inaccuracies in the cell.

The Rb light is generated by a plasma discharge in the Rb lamp. This is sustained by a RF oscillator which drives a coil surrounding the Rb lamp bulb. In addition, the lamp is heated to 140°C and stabilized within 0.2°C over the full operating temperature range. The temperature-controlled heating power is generated by a transistor heater. Another part of the heating power is generated by the RF oscillator.

The Rb absorption cell is heated to ~85°C and also stabilized within 0.3°C over the full operating temperature range. The heating by a transistor and the temperature control follows the same pattern as for the lamp heater.

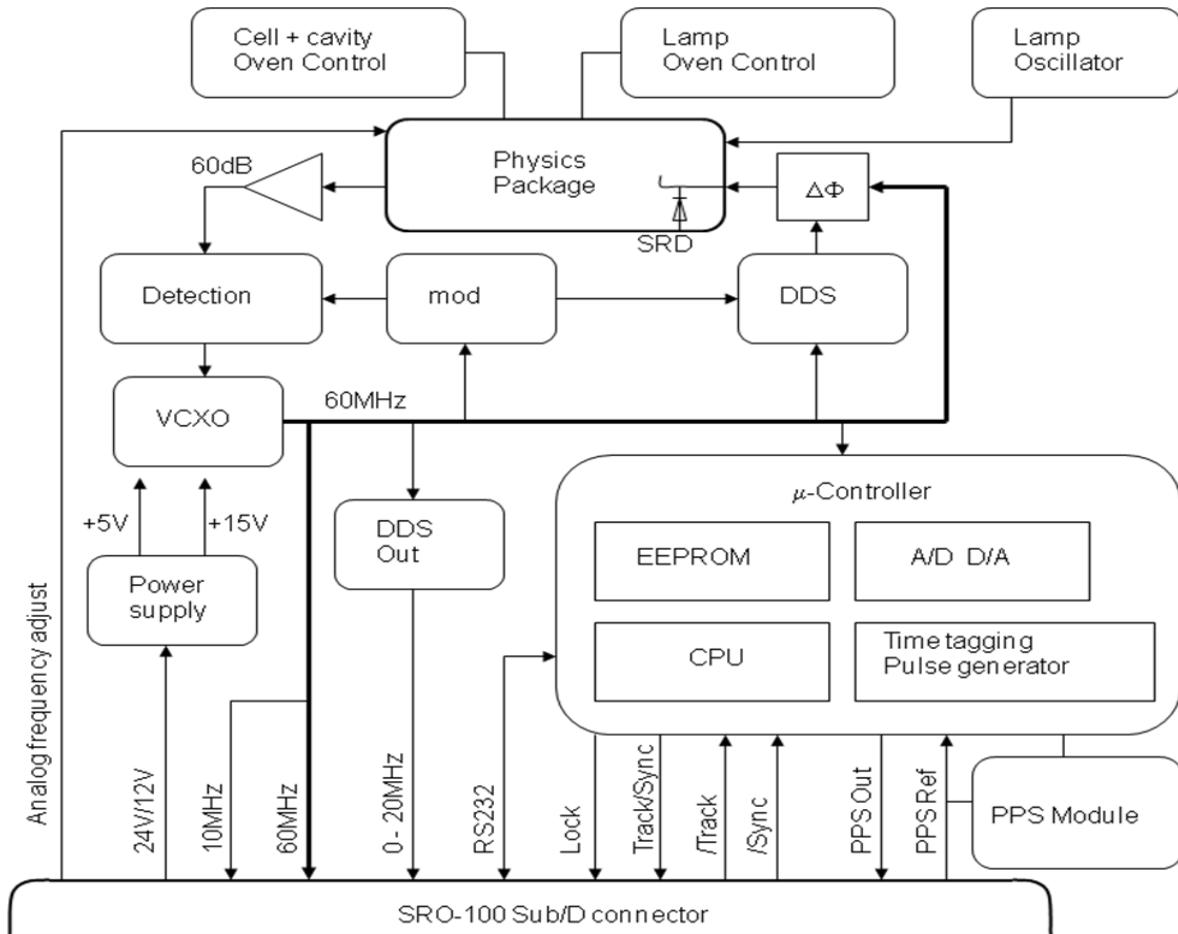


Figure 4: SRO-100 block diagram

The C-field coil within the physics package generates a magnetic field necessary for Rb spectral lines separation. This magnetic field allows fine tuning of the 10MHz output frequency by shifting the Rb frequency hyperfine transition by the second-order Zeeman effect.

A high stability current generator drives this coil. The current is adjustable by the user.

An analog frequency control input is available to the user for center frequency adjustment by external potentiometer or external digital to analog converter.

A serial interface connection for the monitoring and tuning of the internal parameters and the PPS facilities is provided to the user.

The correct operation of the unit can be checked by a single open collector type output signal called "lock monitor". This lock monitor information is generated by the micro-controller and is a function of the following parameters:

- Light level intensity
- Rb signal level (detected signal)
- Heaters supply voltages

The different alarm threshold levels corresponding to the different internal SRO-100 electronics and physics parameters are programmed during the automatic adjustment procedure at the factory.

The PPS functions can be simply controlled by grounding 2 pins. (Track: pin 15, Sync: pin 14.)

When the SRO-100 is successfully tracking an external PPSREF, a TTL signal goes low. (Track/Sync: pin 5).

The power section of the SRO-100 consists of two dc-dc converters. One is used for generating the internal 5V needed by the logic circuitry; the other converter is used to generate 15V needed by the analog amplifiers.

The synchronization of the two converters is achieved by the use of a common ramp generator given by an internal 156.25kHz signal derived by direct division of the 60 MHz main VCXO.

A detailed block diagram of the SRO-100 is given in Figure 4.

2.4. THE TIMING AND TRACKING SYSTEM

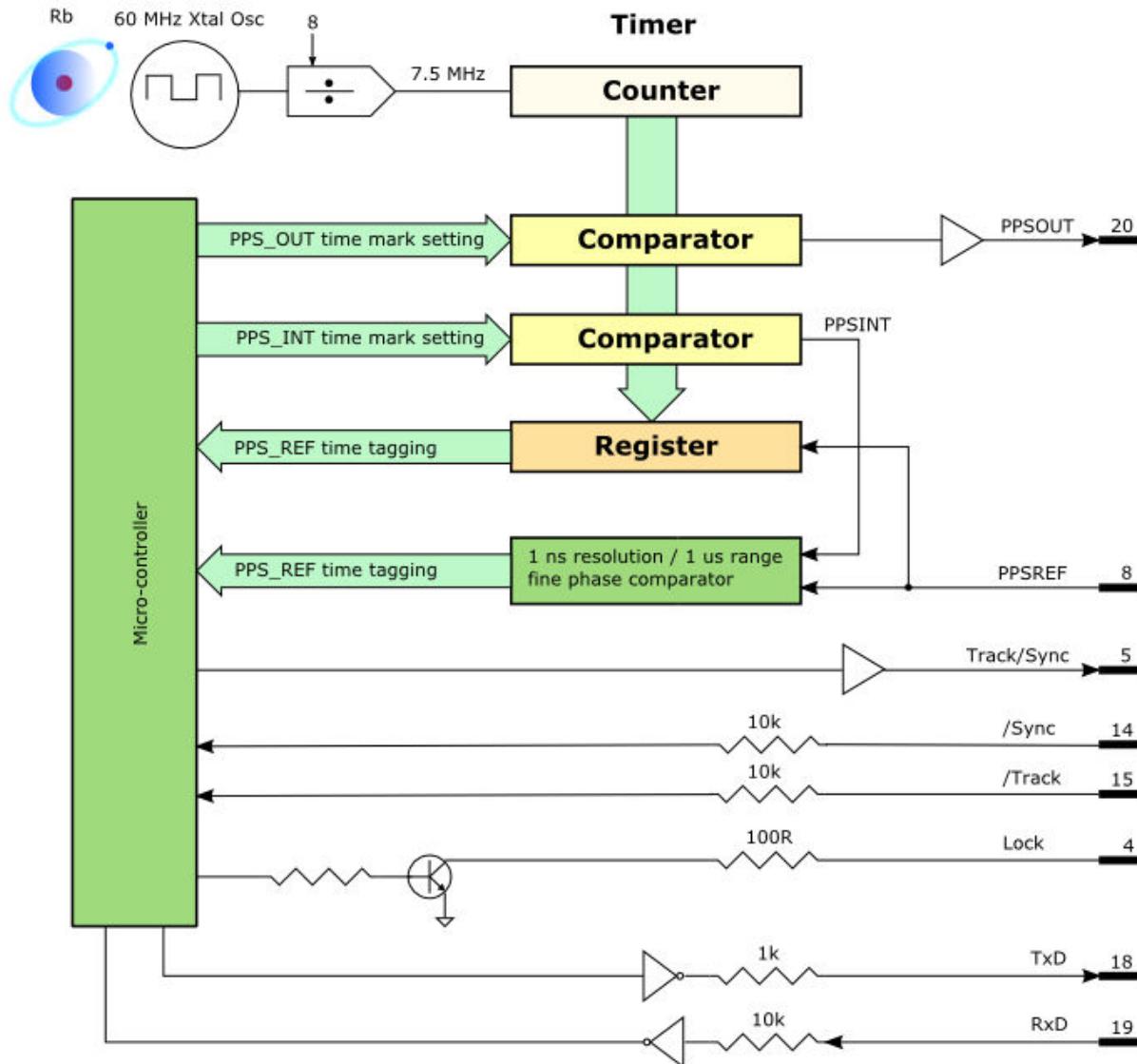


Figure 5: Timing system

The SRO-100 models include extended PPS (Pulse Per Second) facility. The hardware of this facility consists of two modules. The first module is a timer clocked at 7.5 MHz. This timer tags the PPSREF connected to the SRO-100 and generates two other PPS. The first one is called PPSINT and is used internally. The second one is called PPSOUT and appears on pin 20 of the connector.

The second module is a phase comparator with 1 ns resolution and 1 μ s range. This module compares the phase between PPSREF and PPSINT. The phase information is used for the perfect tracking of a low noise PPSREF and for calculating the noise of this PPSREF. The calculation is used to adjust the time constant of the tracking loop. This way, a noisy PPSREF can be directly connected to the SRO-100 without adjustments by hard or software.

A tracking can be initiated by grounding pin 14 and if the tracking is successful, the pin “Track/Sync” will be set in low TTL level. However, all of the tracking and PPS functions can also be controlled via the serial interface port RS232.

2.4.1. THE “TRACK” MODE AND THE “SYNC” MODE

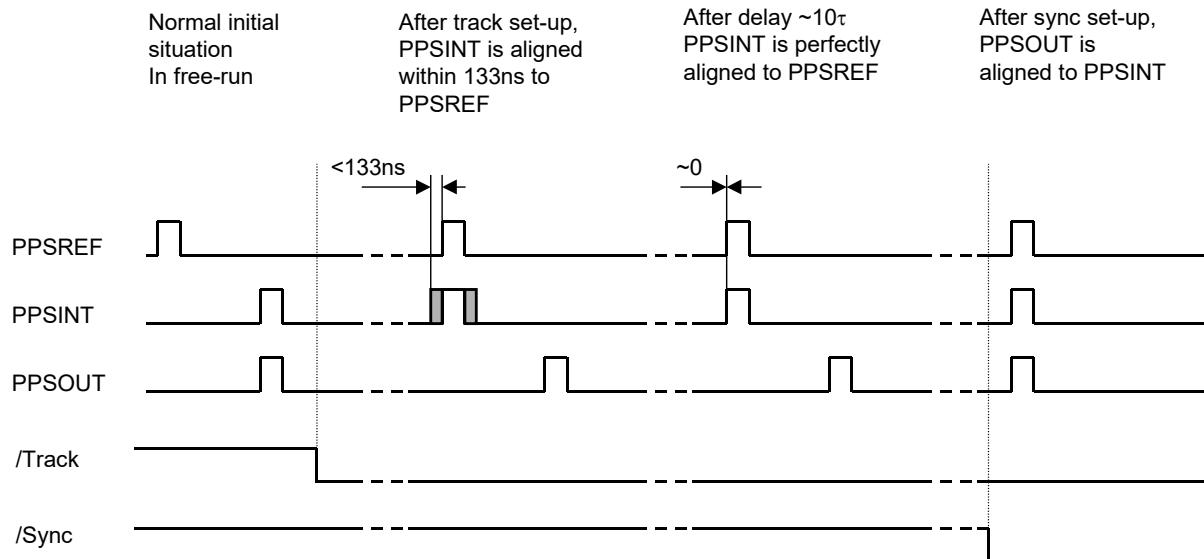


Figure 6: “Track” mode and “Sync” mode

When “track” mode is set-up, the PPSINT is aligned to the PPSREF within 133 ns. Then the phase comparator starts the mid-term frequency stability analysis of the PPSREF. The tracking loop time constant is adjusted in consequence and the SRO-100 start to track the PPSREF.

During all of this operation, the position of the PPSOUT is not changed. The PPSREF timer is working on an independent way. So the PPSOUT will not suddenly jump when the SRO-100 starts to track a PPSREF.

When “sync” mode is set-up, the PPSOUT is aligned to PPSINT. “Sync” mode can only be set-up when the SRO-100 is already tracking successfully a PPSREF.

If “sync” mode is set-up just after the SRO-100 start to track a PPSREF, the phase-time difference between PPSOUT and PPSREF can be as big as 133 ns. Of course, the tracking loop will reduce this difference and will bring it nearly to null in case the noise of the PPSREF is low.

2.4.2. THE FREQUENCY LEARNING

When the SRO-100 is tracking the PPSREF of a master oscillator, in reality, it aligns frequency to the master.

The learning process is simply the memorization of this frequency from time to time to use it after a Reset or Power-ON.

By default, when the SRO-100 is continuously and successfully tracking a PPSREF, the average value of the frequency is saved in EEPROM every 24 hours.

With the command FSx<CR>, it is possible to cancel the learning or to make an immediate save.

2.4.3. THE FREQUENCY IN USE

With the PPSREF facilities, a different frequency can be in use in different situations. Let know first, that the frequency just currently in use is located in a single register, and that this register can always be read by the user. The command to read this register is: FC??????<CR>.

On an SRO-100 connected through the serial interface to a terminal, it is possible to follow the evolution of the tracking by this way.

The frequency or frequency correction in use in different situations is as following:

- After a Reset or Power-On, the freq. corr. is copied from the EEPROM to the RAM and used.
- After the start of a tracking, the internal freq. corr. is the one of the EEPROM.
- During a tracking, the freq. corr. in use changes continuously to align as good as possible the PPSINT to the PPSREF. By default, the average value is saved in EEPROM every 24 hours.
- If the SRO-100 is stopped in its tracking, and put in FREE RUN mode by the user, with the command TRO for example, the freq. corr. in EEPROM is retrieved and loaded in RAM to be used.
- If the tracking is stopped because the PPSREF signal disappears suddenly or is strongly degraded, the integral part value of the regulation loop becomes active. This is to avoid a frequency jump in case the PPSREF signal comes back again. This mode of operation is called hold-over.

2.4.4. USER FREQUENCY CORRECTION

This correction is only possible in Free Run mode by using the command FCsdddd. The command has 2 effects:

- Memorization of the asked frequency in EEPROM
- immediate use of the new frequency.

2.4.5. THE PPS TRACKING LOOP

The SRO-100 is equipped with a numerical PI regulation loop to track the PPSREF. The time constant of the tracking loop is either set automatically, or forced by the user with the command TCdddddd.

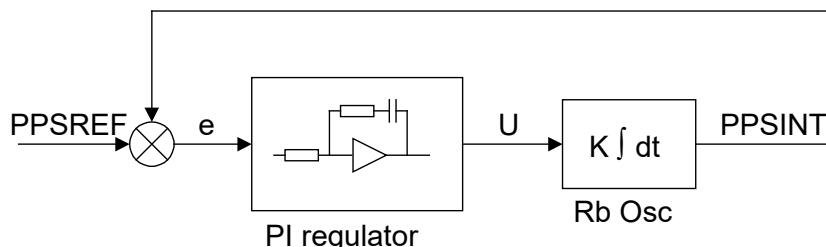


Figure 7: Schematic of the PPSREF regulation loop

By default, the optimum loop time constant is computed by the SRO-100 from information's like PPSREF noise and temperature fluctuations. Remarks :

- If the precise fine phase comparator cannot give a valid information, the time constant is forced to 1000s.
- The loop time constant can be forced to a fixed value with the command TCdddddd
- Since Version 1.097, the time constant can be forced to 277 seconds during the beginning of a tracking with the command GFdddd

2.4.6. TRACKING LIMITS AND ALARMS

If the frequency between the SRO-100 and the master to track is too large, after some time, the phase time error between PPSINT and PPSREF can become too big for some applications.

There are two limits. If the phase time error becomes bigger than the first limit, an alarm is raised up, but the tracking continues. If the phase time error comes bigger than the second limit, then the tracking stops. The first limit is called (no) alarm window and the second window tracking window.

The value of the half (no) alarm window can be changed by the user with the command AWddd. By default, its value is 015 counter steps or $\pm 2\mu\text{s}$.

The value of the half tracking window can be changed by the user with the command TWddd. By default, its value is 015 counter steps or $\pm 2\mu\text{s}$.

For more details, see the Chapter "TIMING AND TRACKING COMMANDS".

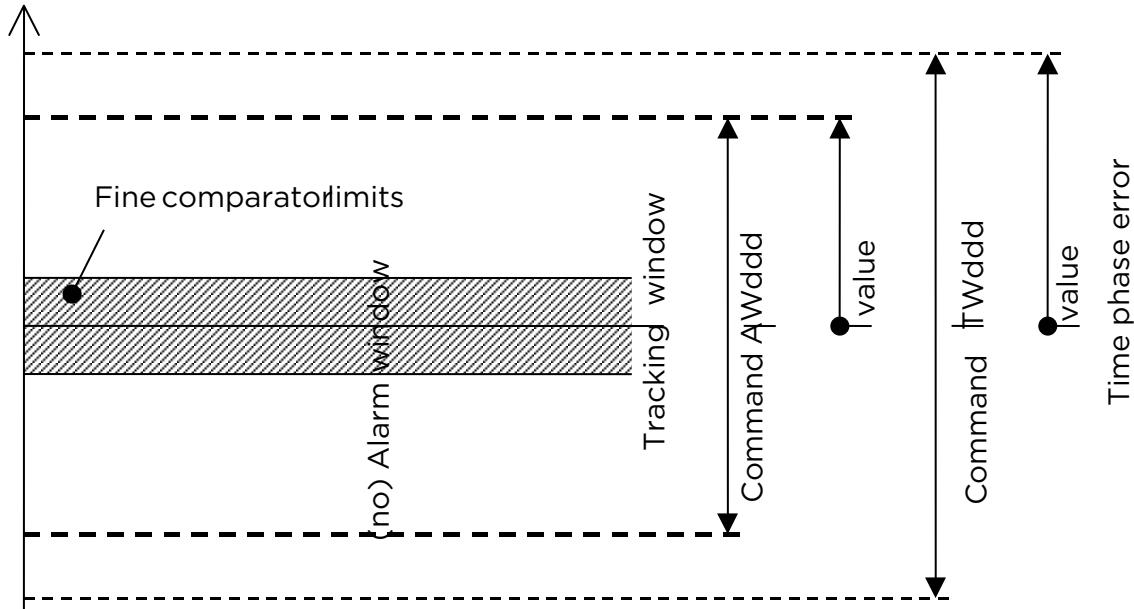


Figure 8: Tracking limits

2.4.7. FREQUENCY FLUCTUATIONS DURING THE TRACKING

To track a PPSREF, the SRO-100 must change its frequency. The authorized frequency variations are limited by factory to $\pm 1 \cdot 10^{-8}$. That mean the variations of the register DDSUSER are limited to ± 19531 during a tracking. Or in hexa to $\pm \$4C4B$. But this value can be changed by factory setting to any other value. Any limitation can also be left of by factory setting. In this case, the limitations are simply the limits of the signed integer DDSUSER, in other words $+32767/-32768$, or to $\pm 1.6 \cdot 10^{-8}$ in relative frequency. If during the tracking of a PPSREF the SRO-100 reach the frequency limit, the frequency will be limited to this frequency and no error will be raised up as long the phase time error is staying in the (no) alarm window. If the SRO-100 is connected to a terminal through the serial port, the user can read out the current frequency limitation in use by typing R14<CR>, R15<CR>. The returned values are the MSB and the LSB of a signed integer coded on 2 bytes representing the authorized frequency variations in $5.12 \cdot 10^{-13}$ steps. The user can also check out if the DDSUSER is currently limited by typing R4F<CR>. If there is a problem, the bit 1 and bit 2 of this register will not be set to 0.

2.4.8. FINE PHASE COMPARATOR OFFSET

This fine offset adjustment can be used in case of precise phase calibration. The range of the offset is $+127/-128$ steps of the fine phase comparator. As the fine comparator works analogue, a step corresponds to approx. 1 ns. The command to put the offset is COsddd <CR>

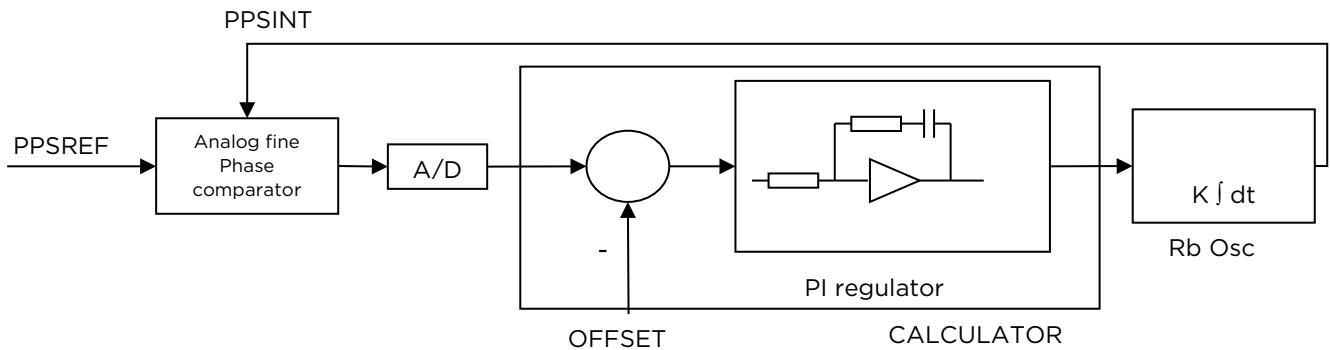


Figure 9: Schematic of the analog fine phase comparator regulation loop

2.4.9. CONFIGURATIONS USING THE MCS06yy COMMAND

yy	Bit	State	Default value	Comment
10	4	1: cancel FC writing in eeprom 0: FC is writing in eeprom	0	FC. To avoid continuous writing in eeprom in case of custom tracking with FCsdddd or Cxxxx
08	3	--	0	Not used
04	2	1: tracking re-start allowed 0: no tracking re-start	0	RT. Re-start tracking after 5 minutes if a good PPSREF is found
02	1	1: align to PPSref frequency 0: no alignment	0	FA. Frequency alignment before going in tracking
01	0	1: test 0: no test	0	FT. Frequency test before going in tracking

To modify, first read back with the command MCL06, change yy and write the new value with the command MCS06yy. The new configuration will be active after a Reset or Power-ON

For cancellation of writing in eeprom of Commands Cxxxx or FCsdddd, just send MCS0610. Usually, yy is at its Default value 00

3. SRO-100 SPECIFICATIONS

The latest version of the SRO-100 specifications can be downloaded from <https://safran-navigation-timing.com/product/sro-100/>

4. SRO-100 INSTALLATION AND OPERATION

4.1. INTRODUCTION

This chapter of the manual contains information regarding the installation and operation of the SpT Model SRO-100. It is recommended to read this chapter carefully prior to operate the unit.

4.2. Safety!

Warning: Use proper ESD precautions

Caution: Ensure that all cables are properly connected

- The equipment contains small quantities of rubidium metal hermetically sealed inside the glass lamp and cell assemblies, hence, any dangers arising from ionizing radiation are caused for human health (exemption set in article 3 to Council directive 96/29/Euratom). For further information, ask for the «rubidium product data sheet».
- Handling the product in a reasonably foreseeable conditions do not cause any risk for human health, exposure to the SVHC (substances of very high concern) would require grinding the component up.

4.3. Environmental Responsibility

- The equipment contains materials, which can be either re-used or recycled.
- Do not deposit the equipment as unsorted municipal waste. Leave it at an authorized local WEEE collection point or return to Safran Trusted 4D to ensure proper disposal.
- To return the appliance:
 - Submit a support ticket at aftersales.clocks@nav-timing.safrangroup.com and request an RMA.
 - We will contact you for more information and/or with shipment process details.

4.4. SHIPPING AND RECEIVING INFORMATION

The SRO-100 is packaged and shipped in a foam-lined box. The unit is inspected mechanically and electrically prior to shipment. Upon receipt of the unit, a thorough inspection should be made to ensure that no damage has occurred during shipping. If any damage is discovered, please contact

SAFRAN TIMING TECHNOLOGIES SA
PHONE: +41 32 732 16 66
CH-2000 NEUCHATEL / SWITZERLAND

Should it be necessary to ship the unit back, the original case and packing should be used. If the original case is not available, a suitable container with foam-packing is recommended.

Caution: Care must be taken for the transportation of the SRO to ensure that the maximum acceleration due to a choc 50 g / 18 ms is not exceeded.

SRO-100 contains glass bulbs, crystal resonators, and crystal filters.

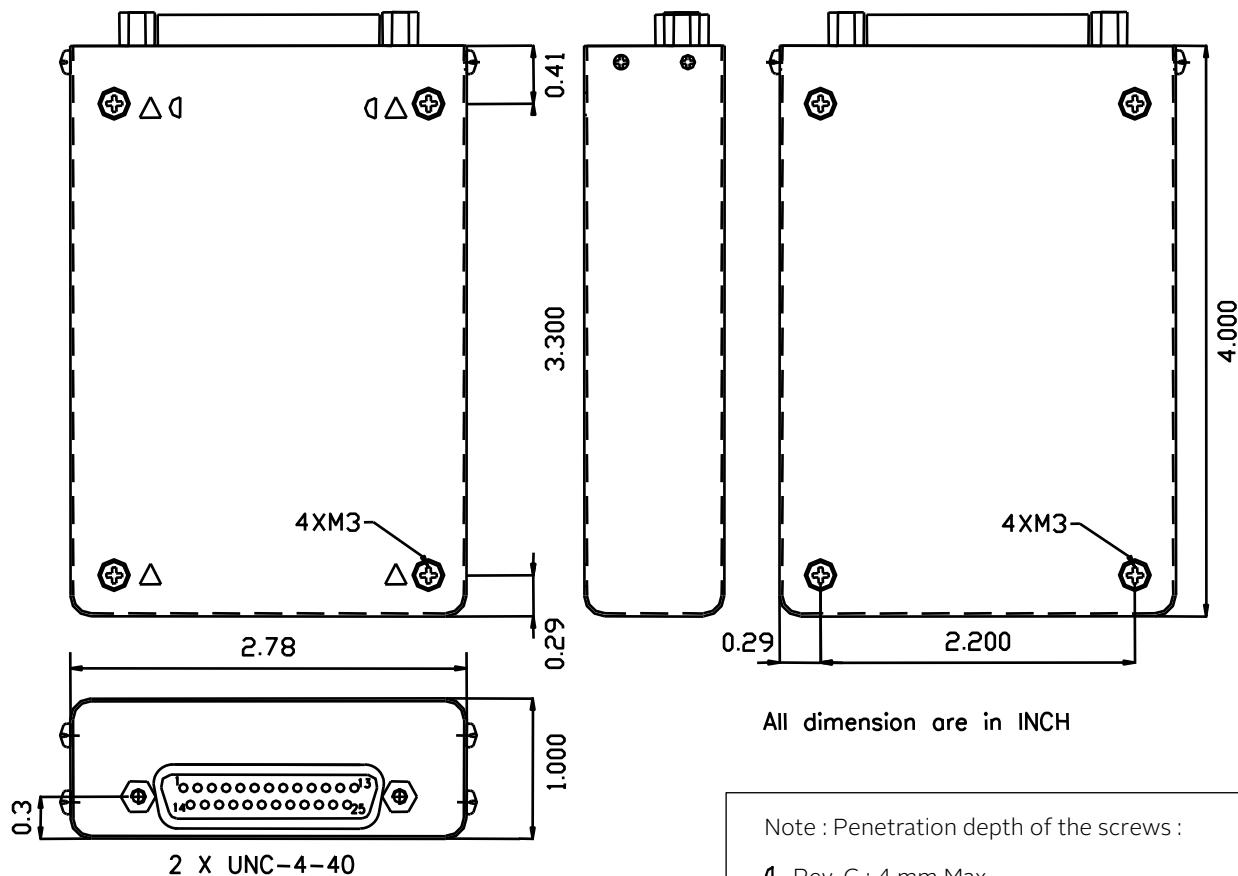
4.5. Mounting

The unit should be mounted in preference to a metallic base-plate or thermal dissipater.

The heat transfer characteristics of the mounting surface must be adequate to limit the rise of the unit's base plate to <+60°C. Since the minimum total power consumption for proper Rb operation is around 300mA / 24V, the allowable environmental temperature ($T_{a\max}$), for this mounting is:

$$T_{a\max} = 60^\circ\text{C} - Vs \times$$

Where: V_s = Supply voltage
 $I_s \times R_k$ I_s = Supplied current
 R_k = Heat sink thermal resistance


Caution: Care must be taken to ensure that the maximum operating temperature is not exceeded.

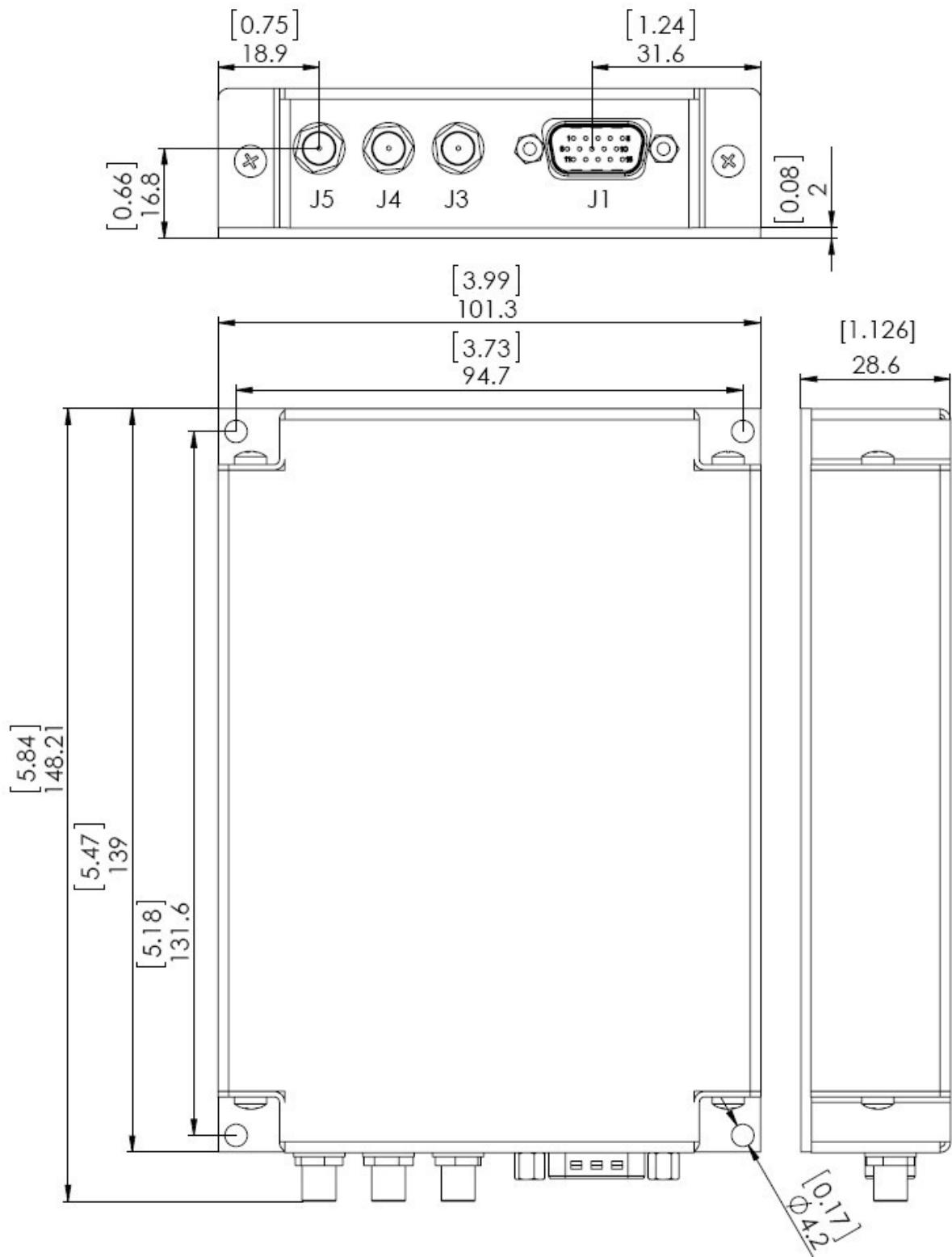
(+60°C as measured at unit's base plate).

The SRO-100 is designed for being directly mounted on the host instrument PCB, involving a problem of thermal dissipation. The SRO-100 mounting depends on the available space, the ambient temperature into the instrument box and the distance of the SRO-100 case to the nearest instrument heat sink.

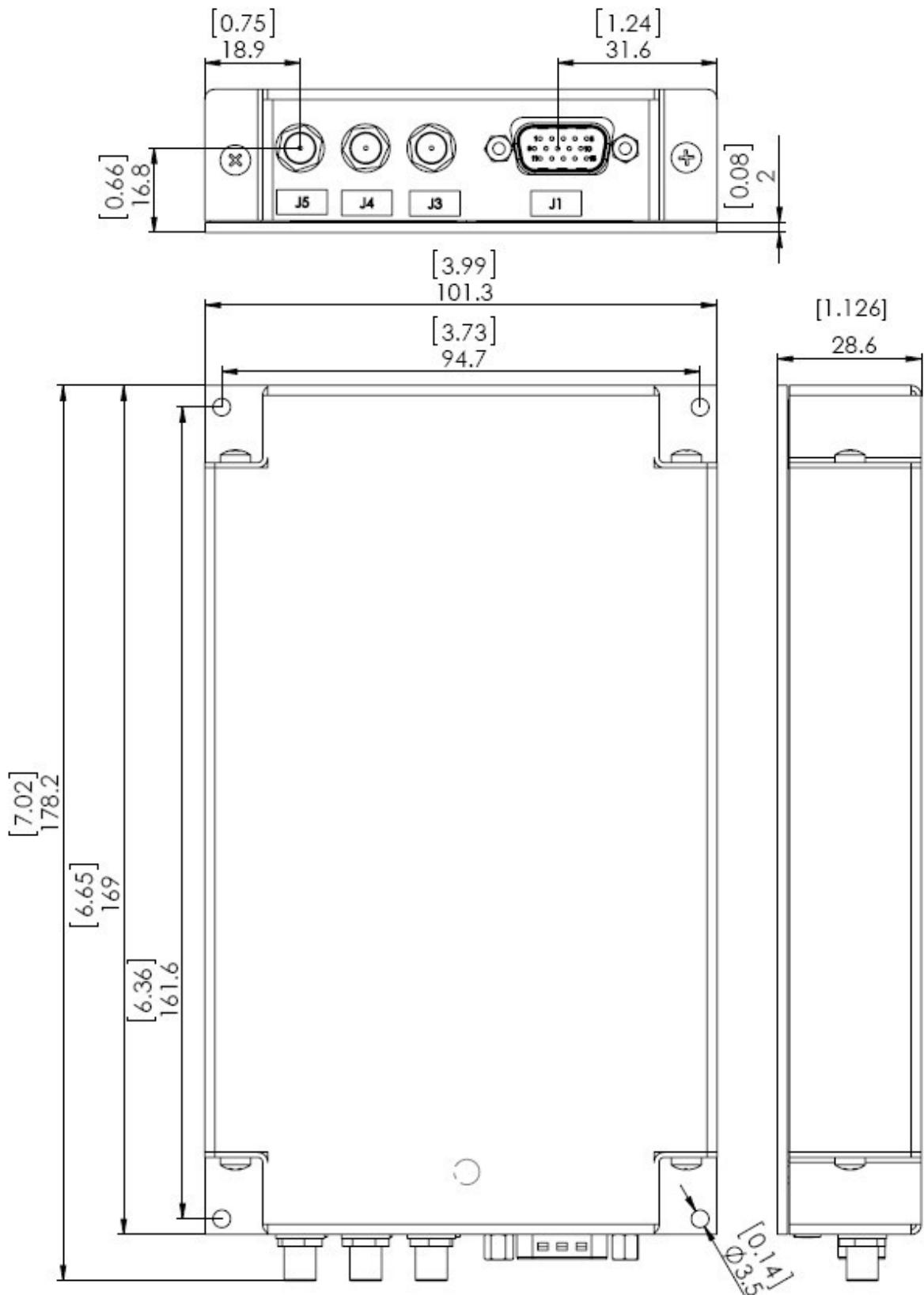
The SRO-100 is a well shielded unit. Nevertheless, some consideration must be given to the operating location of the unit, regardless of its application. To minimize frequency offsets and/or non-harmonic distortion, the unit should not be installed near equipment generating strong magnetic fields such as generators, transformers, etc.

4.5.1. SRO-100 PACKAGE

Note : Penetration depth of the screws :


⊖ Rev. C : 4 mm Max.

△ Rev. D : 8 mm Max.


Figure 10: Mechanical layout of the SRO-100. All dimensions are in inches, except screws, not to scale

4.6. MOUNTING & MECHANICAL LAYOUT for SRO-5680

4.6.1. For standard model :

4.6.2. With LN, ULN, LGS or EULN option

4.7. PIN FUNCTION LAYOUT for SRO-100

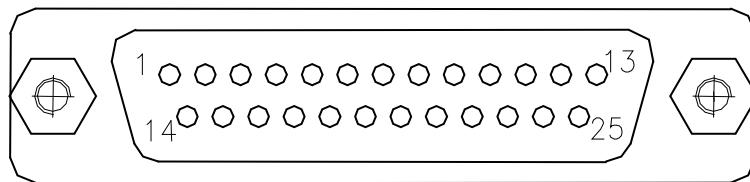
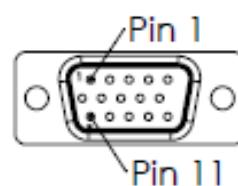


Figure 11: Pinout of SRO-100 (DB25 iSync standard)

The complete pin layout is given in the following table:


Pin nbr	SRO-100	Recommendation	Dir
1	12V(11.2 to 16) or 24V (20 to 32)		Input
2	12V(11.2 to 16) or 24V (20 to 32)		Input
3	GND		Ret
4	Rb lock (open collector) (lock=open)		Output
5	Track/Synch Alarm (TTL+1K) (lock=0V)		Output
6	FA (analog frequency adjust input)	Let float if not used	Input
7	Vref out (+5V internal reference)	I _{max} = 1mA	Output
8	PPSREF (reference time pulse)	Let float if not used	Input
9	NC (Factory use or diagnostics)		Output
10	GND		Ret
11	NC (For future use)		Output
12	NC (For future use)	Let float	Input
13	60M (60MHz square 3.3V output) or (10MHz square 3.3V; option LVCMOS)		Output
14	/Sync (synchronize PPSOUT to PPSREF)	Let float if not used	Input
15	/Track (PPSREF phase tracking)	Let float if not used	Input
16	NC (Factory use or diagnostics)	Let float	In-Out
17	/Reset (SRO-102 micro controller)	Let float if not used	Input
18	TxD (RS232 Transmit 0-5V)		Output
19	RxD (RS232 Receive 0-5V)	Let float if not used	Input
20	PPSOUT (output time pulse from internal clock)		Output
21	NC (For future use)	Let float	Input
22	GND		Ret
23	GND		Ret
24	RFOUT (5 or 10 or 15MHz sinus 7dBm into 50Ω)		Output
25	GND		Ret

4.8. PIN FUNCTION LAYOUT for SRO-5680

Connector: 15 pins in 3 rows:

Pin	Function
1	Power +24V (+12V)
2	GND
3	Freq. Adj
4	GND
5	Vrefout
6	Power +24V (+12V)
7	GND
8	/Sync
9	/Track
10	PPSREF IN
11	PPS OUT
12	BITE (clock monitor)
13	Track/Sync alarm
14	RxD
15	TxD

Connector	Function
J3	PPSREF IN
J4	PPS OUT
J5	RF OUT

4.9. NORMAL OPERATION

When 24 Vdc (or 12V) is applied to pins 1/2 (+) and 3/10/12/21/22/23/25 (-), the unit will immediately begin to generate a 10 MHz signal from the crystal oscillator. Within approximately 10 minutes (standard version) after application of input power, the unit will "lock". Hence the crystal is now stabilized by the atomic resonant frequency.

4.9.1. THE "LOCK" MONITORING

The unit is able to provide a single signal called 'lock monitor' (pin 4) which toggles to high level (open collector) when the internal crystal oscillator is locked to the Rb atomic resonance. (see chapter 4.13).

4.9.2. ANALOG FREQUENCY PULLING

The SRO-100 is equipped with an analog frequency adjustment circuit which provides center frequency adjustment by applying an external voltage from 0 to 5V on pin 6. SRO-100 standard frequency pulling range for 0 to 5V is $-5 \cdot 10^{-9}$. This analog voltage can be generated with an external potentiometer connected to Vref, pin 7 and GND (see pin function layout).

4.9.3. PPS FACILITIES

Immediately after Power-ON, a PPSOUT signal is provided.

Once the SRO-100 is "lock", a tracking to a PPSREF can be initiated by grounding the pin 15 ("/Track").

When the SRO-100 is successfully tracking this PPSREF, the pin 5 goes to the low TTL state.

The PPSOUT can be aligned to the PPSREF by grounding the pin 14 ("/Sync").

If the pin 15 (/Track) is continuously grounded, the SRO-100 initiates immediately to track a PPSREF after "lock":

If the pin 14 (/Sync) is continuously grounded, the SRO-100 will immediately align PPSOUT to PPSREF after it starts to track this PPSREF.

4.9.4. OTHER PROVIDED SIGNALS

XTAL frequency on pin 13.

4.9.5. OPTIONAL SIGNALS

DDSOUT frequency on pin 11. This frequency can only be changed via the serial interface.

4.10. SIMPLE SERIAL INTERFACE OPERATION

4.10.1. INTRODUCTION

The SRO-100 is equipped with a micro-controller which supervises the normal working of the device. All the working parameters are stored in a built-in EEPROM memory.

The built-in serial interface allows an automatic parameter adjustment during the manufacturing.

The serial interface serves also for the monitoring and tuning of the internal parameters and the PPS facilities.

4.10.2. SERIAL INTERFACE CONNECTION

The data transfer from the SRO-100 can be made by direct connection to a PC or standard terminal. The data transfer parameters are the following:

bit rate: 9600 bits/s.

parity: none

start bit: 1

data bits: 8

stop bit: 1

Note: In most cases, the serial PC interface accepts the 0 to 5 V level and a direct connection can be made. In case this standard is not working, please refer to the small adaption circuit called 'RS 232 adapter circuit' described in the appendix.

If you experience problems with the serial interface, contact <https://safran-navigation-timing.com/product/sro/>.

4.10.3. SRO-100 INTERNAL PARAMETERS MONITORING

The internal parameters monitoring is made via the serial interface and with the use of single command "M" followed by a carriage return character.

RS_GetTable

The SRO-100 will respond to this single-character command with an eight ASCII/ HEX coded string, such as:

HH GG FF EE DD CC BB AA <CR><LF>

Where each returned byte is an ASCII coded hexadecimal value, separated by a <Space> character. All parameters are coded at full scale.

HH:	Read-back of the user provided frequency adjustment voltage on pin 6 (0 to 5V)
GG:	reserved
FF:	peak voltage of Rb-signal (0 to 5V)
EE:	DC-Voltage of the photocell (5V to 0)
DD:	varactor control voltage (0 to 5V)
CC:	Rb-lamp heating current (Imax to 0)
BB:	Rb-cell heating current (Imax to 0)
AA:	reserved

- *DC-Frequency adjustment voltage .*

HH: o/p frequency adj. voltage (0 to 5V for \$00 to \$FF)

This parameter corresponds to the frequency adjustment voltage provided by the user. This information can be used for a read-back of the current voltage applied to pin 6 of the SRO-100 connector.

- *Reserved*

GG:

- *Rb signal level.*

FF: Peak voltage of Rb signal level (0 to 5V for \$00 to \$FF)

This signal monitors the rectified value of the AC signal produced by the interrogation process of the Rb dip absorption. During warm-up time this signal is approximately 0V and after it stabilizes to a nominal value of 1 to 5V. As long as this signal is too low the internal SRO-100 control unit sweeps the Xtal frequency in order to find the Rb absorption dip.

- *DC-Voltage of the photocell.*

EE: DC-Voltage of the photocell (5V to 0 for \$FF to \$00)

This signal corresponds to the transmitted Rb light level. This is the light of the Rb lamp which is partly absorbed by the Rb cell. The nominal photocell voltage is in the range 2.0 to 3.5 V but must stay stable after the warm-up time. The photocell voltage is related to the internal reference 5 V voltage. The full scale corresponds to the coded value \$00 and the zero (no light) corresponds to the coded value \$FF

- *Frequency adjustment voltage.*

DD: VCXO control voltage (0 to 5V for \$00 to \$FF)

This parameter corresponds to the voltage applied to the varicap of the internal VCXO.

In normal operation this voltage is mainly temperature dependent in the range 2 to 3V in order to compensate the frequency versus temperature characteristic of the crystal resonator.

During warm-up the control unit generates a ramp of this parameter from 0.3 to 5V and from 5V to 0.3V until the Rb dip absorption is found.

- *Rb lamp heating limiting current.*

CC: Rb lamp heating limiting current (Imax to 0 for \$00 to \$FF)

This parameter corresponds to heating limiting current applied to the lamp heating resistive element. In normal operation, this current depends on the ambient temperature but should stay between \$1A and \$E6. During warm-up, this current is set to its maximal value \$00 (no current limiting).

- *Rb cell heating limiting current.*

BB: Rb cell heating limiting current (Imax to 0 for \$00 to \$FF)

This parameter corresponds to heating limiting current applied to the cell heating resistive element. In normal operation, this current depends on the ambient temperature but should stay between \$1A and \$E6. During warm-up, this current is set to its maximal value \$00 (no current limiting).

- *Reserved*

AA:

4.10.4. CENTRE FREQUENCY ADJUSTMENT WITH THE SERIAL INTERFACE

A single character command is available to the user for center frequency adjustment.

Cxxxx<CR>[<LF>]* : output frequency correction through the synthesizer, by steps of $5.12 \cdot 10^{-13}$, where xxxx is a signed 16 bits.

This value is automatically stored in a EEPROM as last frequency correction which is applied after Reset or Power-ON operation.

In track state, the user frequency correction is changed internally by the software for optimum alignment. The basic command FCsdddd do the same. (See section 4.7). Since Ver. 1.096, it is possible to cancel the writing in eeprom of this command with the configuration parameter MCv06. See section 2.4.9 for details. But a writing in eeprom of the frequency in use is always possible with the command FS3.

Examples:

C0000<CR> : return to the nominal value (factory setting)

C7FFF<CR> : the current frequency is increased of 16.7 ppb. 10'000'000.000 Hz become 10'000'000.167 Hz.

C8000<CR>: the current frequency is decreased of 16.7 ppb. 10'000'000.000 Hz become 9'999'999.833 Hz.

Warning : This command can act into non volatile memory. Numbers of commands sent during the whole unit life time limited to 10'000 in total (all commands cumulated)

4.10.5. CENTER FREQUENCY READ-BACK

R05<CR>[LF] : read-back high byte of user frequency correction currently in use.
R06<CR>[LF] : read-back low byte of user frequency correction currently in use.
L05<CR>[LF] : read-back high byte of user frequ. corr. in use after Reset or Power-ON.
L06<CR>[LF] : read-back low byte of user frequ. corr. in use after Reset or Power-ON.

In track state, the value of all of these registers is subject to change by the software for optimum alignment.

4.10.6. DDS OUT FREQUENCY

Since Vers.1.096, there is no more DDSOUT frequency option for the SRO-100.

4.11. PPS SERIAL INTERFACE

The SRO-100 uses the same serial interface to set and control the PPS and timing facilities.

For this purpose, a more complex supervision of the device is introduced.

4.11.1. GENERAL STATUS OF THE SRO-100

The SRO-100 can send through the serial port once per second or “à la demande” its general internal status. The meaning of this status is:

General status:

- 0 Warming up. This happens when the SRO-100 is just powered on and the temperature of the cells is not high enough.
- 1 Tracking set-up: The SRO-100 is in this state when it goes from free-run status to the track status after a track set-up. The duration of this state should not exceed 3 minutes.
- 2 Track to PPSREF. PPSINT is aligned to PPSREF.
- 3 Sync to PPSREF. PPSINT and PPSOUT are aligned to PPSREF.
- 4 Free Run. Track off.
- 5 Free Run. PPSREF unstable. The stability of the PPSREF is too low to be tracked.
- 6 Free Run. No PPSREF was detected.
- 7 Factory used.
- 8 Factory used.
- 9 Fault or Rb Out Off Lock. This happens when the VCXO is scanning to find the Rb line.

4.11.2. TIMING AND TRACKING COMMANDS FORMAT

The commands are not case sensitive. But they should have the exact length. The termination character is <CR>. An additional <LF> is tolerated and has no effect. Blank characters are not tolerated. Chained commands are tolerated if the total length is not exceeding ~30 characters.

TIMING AND TRACKING COMMANDS

ID<CR>[<LF>] : Identification
 Answer: **TNTSRO-aaa/rr/s.ss<CR><LF>**

aaa: 100 if SRO-100
rr: revision number
s.ss: software version

Example: **ID<CR>**, answer: **TNTSRO-100/00/1.096<CR><LF>**

SN<CR>[<LF>]:

Answer: **xxxxxx<CR><LF>**

Example: **SN<CR>**, answer: **000098<CR><LF>**

ST<CR>[<LF>]:

Answer: **s<CR><LF>**

s: status
0: warming up
1: tracking set-up
2: track to PPSREF
3: sync to PPSREF
4: Free Run. Track OFF
5: Free Run .PSREF unstable
6: Free Run. No PPSREF
7: factory used
8: factory used
9: Fault or Rubidium out off lock

Example: **ST<CR>**, answer: **4<CR><LF>** (Free Run. No tracking)

TRx<CR>[<LF>] * :

Set tracking mode of PPSINT to PPSREF

x: tracking mode setting

0: Track never, Free Run. (0→EEPROM) *
1: Track now.
2: Track always. (1→EEPROM) *
3: Track now + always (1→EEPROM) *
?: Interrogation

x<CR><LF>

x: Tracking enable at Reset or Power-ON

0: Not enabling tracking at Reset or Power-ON
1: Enabling tracking at Reset or Power-ON

Answer:

- The tracking mode setting is kept in EEPROM.
- The SRO-100 can also be set in tracking mode by grounding the pin 15 of the connector.
- Whatever from software or from hardware, the Track mode 1 has the priority. The answer takes this situation into account.
- The SRO-100 needs a few minutes to be in tracking state. During this delay, ST<CR> answers 1.
- The command TRx has no influence on the phase of PPSOUT if the command SY9<CR> answers 0<CR><LF>.
- When track mode is set to 1 by hardware or software, the tracking of PPSINT to PPSEXT starts when General Status goes from 9 to 4.
- This command doesn't give out the current tracking state. For that, use the command ST<CR>.(answers 2 <CR><LF> when tracking)
- *Warning : This command is acting into non volatile memory. Numbers of commands sent during the whole unit life time limited to 10'000 in total (all commands cumulated). But TR1 followed by TRO don't write in NVM

Example: **TR3<CR>**, answer: **1<CR><LF>**. Will always be in tracking mode. If not yet in this mode, start to track PPSREF.

TRO<CR>, answer: **1<CR><LF>**. In tracking mode because pin 15 is grounded.

SYx<CR>[<LF>] * :

Set synchronization PPSOUT to PPSINT mode.

x: synchronization mode setting

0: synchronize never (0->EEPROM) *

1: synchronize now

2: synchronize always (1->EEPROM) *

3: sync. now + Always (1->EEPROM) *

? : interrogation

Answer:

x<CR><LF>

x: synchronize command status

0: synchronization mode 0.

1: synchronization mode 1.

Notes:

- The synchronization mode setting is kept in EEPROM.
- The SRO-100 can also be set in sync. mode by grounding the pin 14 of the connector.
- Whatever from software or from hardware, the synchronization mode 1 state has priority. The answer takes this situation into account.
- When sync. mode is set to 1 by hardware or software, the synchronization of PPSOUT to PPSINT happens when General Status goes from 1 to 2.
- This command doesn't give out the current sync. state. Therefore, use the command **ST<CR>**.(answer 3 <CR><LF> when synchronized.)
- *Warning : This command is acting into non volatile memory. Numbers of commands sent during the whole unit life time limited to 10'000 in total (all commands cumulated). But S1Y followed by SY0 don't write in NVM.

Example:

SY?<CR>, answer: **1<CR><LF>**. Sync. done when General Status goes from 1 to 2.

DEdddddd<CR>[<LF>] : Set the delay of PPSOUT pulse vs PPSINT.

dddddd: Delay in 133 ns steps.

0000001: minimum delay.

7499999: maximum delay .(approx. 1 s)

0000000: sync. to PPSINT, the same as SY1.

? : interrogation.

Answer:

dddddd: Delay in 133 ns steps.

? : Delay information not valid.

Reset value:

0000000

Notes:

- When going into tracking state, the information delay become no longer valid and the SRO-100 will respond 9999999<CR><LF>.
- In tracking state, after a command **SY1<CR><LF>**, PPSOUT is aligned to PPSINT and the answer is 0000000<CR><LF>.
- In tracking state, after a command **DE??????<CR><LF>**, the PPSOUT is delayed vs PPSINT and the answer is correct.

Example:

DE??????<CR>, answer: **0000000<CR><LF>**

PWdddddd<CR>[<LF>] * : Set the PPSOUT pulse width.

dddddd: Pulse width in 133ns steps.

0000001: minimum pulse.

7499999: maximum pulse.

0000000: no pulse.

? : interrogation.

Answer:

dddddd: Pulse width in 133 ns steps.

0001000 (133 us)

Factory setting :

Last Value stored in EEPROM

Reset value :

PW??????<CR>, answer: **0001000<CR><LF>**

Notes: *Warning : This command is acting into non volatile memory. Numbers of commands sent during the whole unit life time limited to 10'000 in total (all commands cumulated).

TD<CR>[<LF>]: Send out the time of day

Answer: **hh:mm:ss<CR><LF>**

hh: Hours mm: Minutes ss: seconds

Notes:

- After reception of this command, the SRO-100 responds following the rules of the command BTx. This means the answer is not immediate, but can be delayed up to 1 s.

Example: **TD<CR>**, answer: **16:30:48<CR><LF>**

TDhh:mm:ss<CR>[<LF>]: Set the time of day

hh:mm:ss<CR><LF>

hh: Hours mm: Minutes ss: seconds

Answer: **hh:mm:ss<CR><LF>**

hh: Hours mm: Minutes ss: seconds

Reset value: **00:00:00**

Notes:

- After reception of this command, the SRO-100 responds following the rules of the command BTx. This means the answer is not immediate, but can be delayed up to 1 s.

Example: **TD13:00:00<CR>**, answer: **13:00:00<CR><LF>**

DT<CR>[<LF>]: Send out the date

Answer: **yyyy-mm-dd <CR><LF>**

yyyy: Year mm: Month dd: Day

Notes:

- After reception of this command, the SRO-100 responds following the rules of the command BTx. This means the answer is not immediate, but can be delayed up to 1 s.

Example: **DT<CR>**, answer: **2003-12-08<CR><LF>**

- The calendar works from 2000-01-01 to 2099-12-31

DTyyyy-mm-dd<CR>[<LF>]: Set the date

yyyy-mm-dd<CR><LF>

yyyy: Year mm: Month dd: Day

Answer: **yyyy-mm-dd<CR><LF>**

yyyy: Year mm: Month dd: Day

Reset value: **2000-01-01**

Notes:

- After reception of this command, the SRO-100 responds following the rules of the command BTx. This means the answer is not immediate, but can be delayed up to 1 s.

Example: **DT2003-12-08<CR>**, answer: **2003-12-08<CR><LF>**

- The calendar works from 2000-01-01 to 2099-12-31

BTx<CR>[<LF>]:

Beat every second on the serial port

x: parameter to beat.

0: Stop beat.

1: Beat effective time interval PPSOUT vs PPSREF.

Answer: **ddddddd<CR><LF>**

ddddddd: delay in 133 ns steps.

2: Beat phase comparator value.

Answer: **sppp<CR><LF>**

s: +/- sign ppp: phase error, approx. in ns

3: Beat effective time interval PPSOUT vs PPSREF + phase comparator value.

Answer: **ddddddd sppp<CR><LF>**

ddddddd: delay in 133 ns steps.

s: +/- sign ppp: phase error, approx. in ns

4: Beat time of day.

Answer: **hh:mm:ss<CR><LF>**

hh: Hours mm: Minutes ss: Seconds

5: Beat general status.

Answer: **x<CR><LF>**

x: general status. (See command STx)

6: Beat **<CR><LF>**.

7: Beat Date, Time, Status

Answer: **yyyy-mm-dd hh:mm:ss x <CR><LF>**

yyyy : Year mm: Month dd: Day

A: Beat Date, Time, Counter data in NMEA 0183 proprietary format

Answer:

\$PTNTA,yyyymmddhhnnss,q,T3,rrrrrr,ffff,s,x,y*cs<CR><LF>

(See NMEA PROPRIETARY FORMAT Chapter)

B: Beat Frequencies, Tra. loop parameters in NMEA 0183 proprietary format

Answer:

\$PTNTS,B,ffff,iiii,aaaa,x,y,s,cccccc,ggg.gg,x,y*cs<CR><LF>

(See NMEA PROPRIETARY FORMAT Chapter)

Notes:

- The answer is delayed a few ms after the PPSINT pulse. This delay can vary a little.
- When beating time interval PPSOUT vs PPSREF, the answer is ???????<CR><LF> if no pulse is found.
- This can happen when the SRO-100 is going to tracking state, General Status = 1.
- Regarding the phase comparator, no precision or linearity can be expected. This comparator just increases the resolution of the phase used by the tracking algorithm.

Example: **BT5<CR>**, answer **9<CR><LF> 9<CR><LF> ... 4<CR><LF> 4<CR><LF>**. This means the quartz oscillator is just locked to the Rubidium line.

FCsdddd<CR>[<LF>] *:	Set user frequency correction sdddd: frequency correction in $5.12 \cdot 10^{-13}$ step. +00000: no correction. +32767: highest pull-up, +16.7 ppb. -32768: lowest pull-down, -16.7 ppb. ?????: interrogation.
Answer:	sdddd<CR><LF>
Factory setting:	sdddd: frequency correction currently in use.
Reset value:	+00000
	Last value stored in EEPROM.
	In free-run state, the last value stored with the commands FCsdddd or Cxxxx.
	In track state, the last value stored automatically or with the command FSx.
Notes:	
▪ Since Ver. 1.096, it is possible to cancel the writing in eeprom of this command with the configuration parameter MCv06. See Chapter 2.4.9 for details. But a writing in eeprom of the frequency in use is always possible with the command FS3.	
▪ In track state the user frequency correction is changed internally by the software for optimum alignment.	
▪ This command should never be used in track state. (Except FC??????).	
▪ *Warning : This command can act into non volatile memory. Numbers of writings during the whole unit life time limited to 10'000 in total (all commands cumulated).	

FSx<CR>[<LF>] *:	Set frequency save mode. x: mode. 0: no saving. (0→EEPROM) 1: save integral part of tracking correction in EEPROM every 24 hours. (1→EEPROM) 2: save integral part of tracking correction in EEPROM now. 3: save user frequency in EEPROM now. ?: interrogation.
Answer:	x: frequency save mode as written in EEPROM 0: no saving. 1: save integral part of tracking correction in EEPROM every 24 hours.
Factory setting:	1
Reset value:	Last value stored in EEPROM.
Notes:	
▪ In frequency save mode 1, the saving is only done if the SRO-100 is in track state. (General Status 2 or 3).	
▪ If the PPSREF is missing or rejected, the 24 hours period is increased.	
▪ *Warning : This command is acting into non volatile memory. Numbers of commands sent during the whole unit life time limited to 10'000 in total (all commands cumulated).	

Example: **FS?<CR>**, answer **1<CR><LF>**.

TWddd<CR>[<LF>] * :	Set tracking window. Set the window in which time interval PPSINT vs PPSREF should be stored in EEPROM. ddd: half tracking window, from 1 to 255 steps of 133 ns. ?: interrogation
Answer:	ddd : half tracking window in 133 ns steps.
Factory setting:	015 (~ $\pm 2\mu s$)
Reset value:	Last value stored in EEPROM.
Notes:	
▪ If the time interval PPSINT vs PPSREF becomes bigger than the tracking window, the tracking stop.	

- *Warning : This command is acting into non volatile memory. Numbers of commands sent during the whole unit life time limited to 10'000 in total (all commands cumulated).

Example: **TW020<CR>**, answer **020<CR><LF>**.

AWddd<CR>[<LF>] * : Set alarm window.

An alarm is raised up if time interval PPSINT vs PPSREF become bigger than this value. Stored in EEPROM.

ddd: half alarm window, from 1 to 255 steps of 133 ns.

???: interrogation

Answer: **ddd**: half alarm window in 133 ns steps.

Factory setting: **015** ($\sim \pm 2\mu s$)

Reset value: Last value stored in EEPROM.

Notes:

- This command is limited to track state.
- A tracking alarm puts the pin 5 of the output connector to high. The General Status becomes 5. (PPSREF unstable).
- The alarm window cannot be bigger than the tracking window. This window may be reduced by the command TWddd.
- *Warning : This command is acting into non volatile memory. Numbers of commands sent during the whole unit life time limited to 10'000 in total (all commands cumulated).

Example: **AW???.<CR>**, answer **015<CR><LF>**.

TCdddddd<CR>[<LF>] * : Set tracking loop time constant.

dddddd: time constant in seconds.

000000: change to auto selection mode.

001000: minimum value, 1000 s.

999999: maximum value, 999999 s.

???????: interrogation.

Answer: **dddddd**: last time constant selected, in seconds.

Factory setting: **000000**

Reset value: **000000**

Notes:

- In auto selection mode, the time constant is automatically adapted to the PPSREF noise.
- In auto selection mode, if the time interval PPSREF vs PPSINT goes out of the phase comparator range, approx. ± 500 ns, the time constant is set to 1000 s.
- *Warning : This command is acting into non volatile memory. Numbers of commands sent during the whole unit life time limited to 10'000 in total (all commands cumulated).

Example: **TC???????.<CR>**, answer **000000<CR><LF>**

MCvxx[cc..c]<CR>[<LF>] * : Set module customization

v : action verb

L : Load parameter

S : Set parameter, only data Type is RAM or eeprom *

B : Load the behavior at the start of the clock *

A : Activate a message at the start of the clock *

C : Cancel a message at the start of the clock *

H : Load Help message

T : Load data Type

xx : message number, from 00 to FF

cc..c : parameter, up to 24 ASCII character if it is the user message

Answer: cc..c : message, answer to MCLxx or to MCHxx

or

0/1 : Behavior of a message at the start of the clock, answer to MCBxx

or

xy : data Type, answer to MCTxx
 x=0 in RAM, x=1 in eeprom, x=2 in Flash
 y=0 byte, y=1 sbyte, y=2 word, y=3 sword, y=4 dword, y=5 sdword,
 y=6 lword, y=7 slword, y=8 string ASCII, y=9 string binary

Pos.	Active.(Def)	Parameter(Default)	Comment
00	1	TNTSRO-100/00/1.096	Factory welcome message
01	0	Free for user message	User welcome message
02	--	05	GPS configuration delay
03	--	03	GPS configuration interval
06	--	00	See Chapter 2.4.9
07	--	01	Error message send
10	0	@@En..	Time RAIM setup (OnCore, Jupiter -T)
11	0	@@At..	Position hold, site survey (OnCore, Jupiter -T)
20	0	@@Gd..	Position control message (M12+)
21	0	@@Gc..	PPS control message (M12+)
22	0	@@Ge..	Time RAIM algorithm (M12+)
23	0	@@Gc..	Time RAIM alarm message (M12+)
30	0	Binary	Quiet (Jupiter-Pico)
40	0	Binary #63	InitLink, quiet (SuperStar II)
41	0	Binary #81	Set mask angle (SuperStar II)
42	0	Binary #69	Set timing parameter (SuperStar II)
43	0	Binary #80	Set operating mode (SuperStar II)

- Parameters in **bold** can be modified by the user
- Pos. \$01 Message can be modified by the user and is stored in EEPROM.
- Pos. \$02 and \$03 Parameters are the delay, resp. the interval of time in second at which the GPS configuration messages are sent out at Start up.
- Positions \$10-11, \$20-23, \$30, \$40-43, are messages that can be sent out by the SRO-102 at Start up to configure GPS receivers. If more information is needed, feel free to contact the SpectraTime support department.

Notes:

- *Warning : This command is acting into non volatile memory. Numbers of commands sent during the whole unit life time limited to 10'000 in total (all commands cumulated).

Example : MCS01An user message **<CR>, MCA01 <CR>** send the following message after start : An user message **<CR><LF>**

COsddd<CR>[<LF>] * : fine phase comparator offset
 sddd: fine phase offset in approx. 1 ns steps
 +000: no offset
 +127: highest offset
 -128: lowest offset
 ?????: interrogation.

Answer: **sddd<CR><LF>**

sddd: phase offset currently in use.

Factory setting:

+000

Reset value:

Last value stored in EEPROM.

Notes:

- This command stores the value in EEPROM
- *Warning : This command is acting into non volatile memory. Numbers of commands sent during the whole unit life time limited to 10'000 in total (all commands cumulated).

VS<CR>[<LF>]: view the Sigma of PPSRef. In tracking Status 2 or 3.

Answer: **ddd.d<CR><LF>**
 ddd.d: Sigma in ns

VT<CR>[<LF>]: view the time constant of the tracking loop.

Answer: **dddddd<CR><LF>**
dddddd: Time constant in s

GFdddd<CR>[<LF>]*: Set and activate the go fast mode during the beginning of a tracking.

dddd: the time during this mode is active. In seconds.
00000: mode not active.
65534: maximum value, 65534 s.
65535: mode always active.
?????: interrogation.

Answer: **dddddd**: duration in seconds.
Factory setting: 00000
Reset value: Last value stored in eeprom

Notes:

- The device is going in tracking after the command TR1 or after grounding the pin 15.
- For the SRO-100, the tracking loop time constant is settled to 277 seconds in this mode.
- When this mode is active, the command VT answers 277.
- The countdown can be read back with the commands R48, R49.
- When this mode is active, the phase noise is degraded and large frequency changes are possible.
- *Warning : This command is acting into non volatile memory. Numbers of commands sent during the whole unit life time limited to 10'000 in total (all commands cumulated).

Example: **GF?????<CR>**, answer **00000<CR><LF>** Go fast mode not active

RA\$ddd<CR>[<LF>]: raw phase adjust
ddd: raw phase adjust in 133 ns steps
+127: highest adjust
-128: lowest adjust
????: interrogation, always +000

Answer: **sd\$dd<CR><LF>**
sd\$dd: raw phase adjust asked in 133 ns steps

Notes:

- This command offset the PPSINT by itself
- This command can be useful for some timing applications to bring the fine comparator into an area where it works
- This command don't move the PPSOUT pulse and don't modify the reading of BT1 or BT3
- This command have an influence on the delay value, command DE\$dd\$dd\$dd, as the delay is in fact referenced to PPSINT

Example : **DE?????<CR>**, answer **00000000<CR><LF>** . Now we do **RA+003**, answer **+003 <CR><LF>**. And then we do **DE?????<CR>**, the answer is **7499997<CR><LF>**

RAQUIK<CR>[<LF>]: this command quickly align PPSINT to PPSREF

Answer: **+000<CR><LF>**

Warning:

- This command can strongly degrade the initialisation and current value of some parameters

- This command can be useful when the device is used as timing machine and there is no time so that "TR1" takes effect
- This command is given to liking well but without guarantee none regarding the integrity and good continuation of the program. It is to the user to make sure that the parameters are initialised correctly after the use of this command

RESET<CR>[<LF>]: this command reset the SRO-100 micro controller

Answer: (Standard identification and welcome messages, may be followed by GPS configuration binary)

4.12. NMEA PROPRIETARY FORMAT

Since software Version 1.09, the SynClock+® is able to give out once per second NMEA 0183 proprietary format messages. This behavior is activated by the command BTx.

DATE, TIME, COUNTER:

\$PTNTA,yyyymmddhhnnss,q,T3,rrrrrr,sfff,s,x,y*cs<CR><LF>

Activated by BTA<CR><LF>

yyyymmddhhnnss: year, month, day, hour, minute, second

q: timing quality indicator, 0: Rb line not locked, 1: Free Run, 2: Disciplined

T3: format of the following 5 data. T3 means:

rrrrrr: time interval PPSREF vs PPSOUT, from 0000000 to 7499999 in 133 ns steps

sfff: phase comparator, from -511 to +512, in approx. 1 ns steps

s: general SRO-100 status

x: don't care, for future use

y: don't care, for future use

cs: checksum in hexa, xor of the characters between \$ and *

Example: **\$PTNTA,20040130160834,2,T3,0000000,+019,3,,*16**

FREQUENCIES, TRACKING LOOP PARAMETERS

Activated by BTB<CR><LF>

\$PTNTS,B,s,ffff,iiii,aaaa,x,y,s,cccccc,ggg.gg,x,y*cs<CR><LF>

s: general SRO-100 status

ffff: current frequency, signed hexa, steps of $5.12 \cdot 10^{-13}$

iiii: holdover frequency, signed hexa, steps of $5.12 \cdot 10^{-13}$

aaaa: eeprom frequency, signed hexa, steps of $5.12 \cdot 10^{-13}$

x: don't care, for future use

y: don't care, for future use

s: loop time constant mode 0: fixed value, 1: automatic

cccccc: loop time constant in use, from 001000 to 999999 seconds

ggg.gg: sigma (1s) of PPSRef in approx. ns.

x: don't care, for future use

y: don't care, for future use

cs: checksum in hexa, xor of the characters between \$ and *

Example: **\$PTNTS,B,3,00B3,00BA,00C1,,1,001000,000.00,,*12**

Serial Communication recommandations :

When it is necessary to retrieve many information from the SRO-100 it is recommended to proceed as follows to avoid an overheading of the communication interface:

1. When commands are chained, wait for the arrival of the ending <CR> <LF> of the former command before sending the next command.
2. With BTx, information is sent out by the SRO-100 every second. In such situation, if it is necessary to retrieve more information with another command, there are 2 possibilities:
 - a) Stop the every second information with BTO, wait for 1 second, then send the other command.
 - b) Just after the arrival of the ending <CR> <LF> of the every second information, send the additional command. There is enough room for the answer of the additional command before the next regularly output.

4.13. TTL OR CMOS LEVEL “LOCK MONITOR” GENERATION

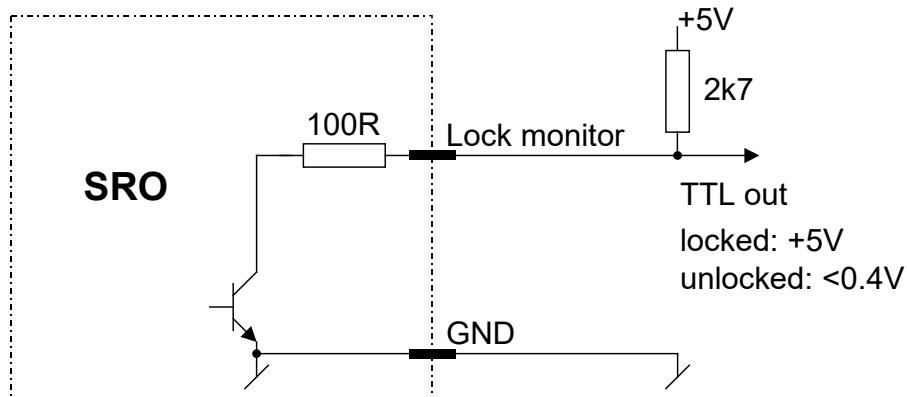


Figure 12: The lock monitor can be directly connected to the TTL load, or a pull-up resistor can be added for CMOS compatibility

4.14. DIRECT VISUAL “OUT OF LOCK” SIGNAL GENERATION

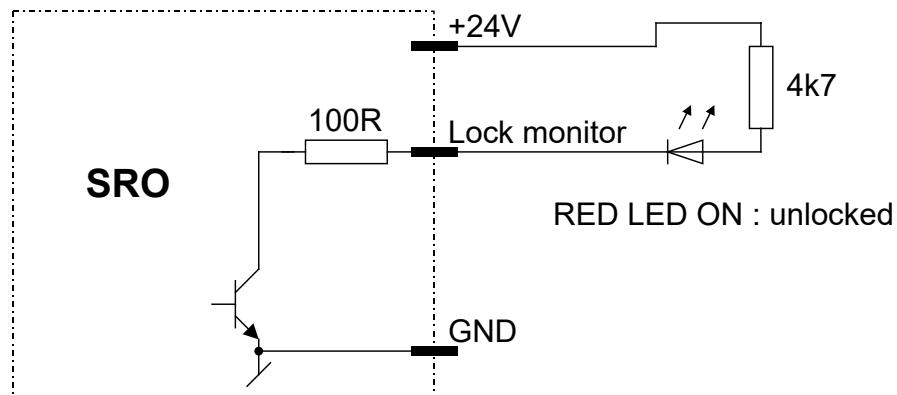


Figure 13 Visual “Out-Of-Lock” generation. The value of the 4k7 resistor should be adapted to the LED drive current.

4.15. CONNECTING A PPSREF TO THE SRO-100

The SRO-100 PPSREF input is equipped with a simple CMOS buffer. The PPSREF signal should swing between 1 V and 4 V with abrupt enough edges. To connect a PPSREF to the SRO-100, a simple shielded cable should be enough for distances up to 2 m. For longer distances, up to 10 m, a transmission cable is recommended. As the SRO-100 input needs enough voltage level, it is not possible to match the impedance on both sides of the cable. So it is recommended to match the impedance only on the side of the PPSREF source with a resistor in serial.

The splitting of the cable to feed another PPSREF receiver is to be avoided absolutely.

For distances longer than 10 m, a line receiver is recommended.

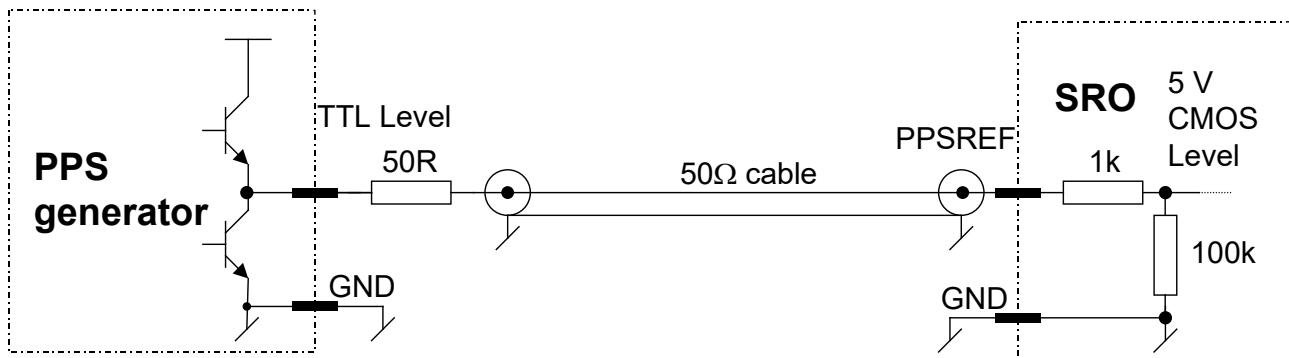


Figure 14: This schematic is recommended to connect a PPSREF to the SRO-100 on distances up to 10 m.

5. Safran Technical Support

For technical support, product specifications, and additional documentation, you can visit <https://safran-navigation-timing.com/product/sro-100/> to submit a support request.

More information on standard unit behavior or any other features or functions of the SRO series can be found on our website at <https://safran-navigation-timing.com/product/sro-100/>

Information furnished by Safran is believed to be accurate and reliable. However, no responsibility is assumed by Safran for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Safran reserves the right to make changes without further notice to any products herein. Safran makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Safran assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. No license is granted by implication or otherwise under any patent or patent rights of Safran. Trademarks and registered trademarks are the property of their respective owners. Safran products are not intended for any application in which the failure of the Safran product could create a situation where personal injury or death may occur. Should Buyer purchase or use Safran products for any such unintended or unauthorized application, Buyer shall indemnify and hold Safran and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable legal fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Safran was negligent regarding the design or manufacture of the part.